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This report has been reviewed by the Eustis Directorate,
U.S. Armmy Air Mobility Research and Development Laboratory
and is considered to be technically sound.
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- The purpose of this effort was to determine, by an experi-
mental investigation, the effects of Mach number on the crag
characteristics of a high-speed helicopter. This investiga-
tion considered both conventional and wingeé helicopter
configurations equipped with three diffe.ent rotor heads
(unfaired, rigid fairing, or floating fairing). The heli-
copter configuration with the floating rotor head fairing
was also equipped with a boundary layer control device to

reduce drag.
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) This program was conducted under the technical tcrnagement
of Mr. William T. Yeager, Jr., znd Mr. Paul H. Mirick of
the Aeromechanics Division of this Directorate.
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SUMMARY

An experimental investigation was carried out to determine the effect of
Mach number on the drag characteristies of a high-speed wingless and
winged helicopter when equipped with two different rotor head fairings.
A simuleted unfaired rotor head was provided as a basis for comparison.
Tests were performed using a 1/9th scale model of a 60,000-pound ciass
helicopter design. Data acquired included gross model force and rctor
head force data, wing and pylon surface pressures, and tuft photos.

For the wingless helicopter configuration, the "floating” rotor head
fairing operating in conjunction with a blowing boundary layer control
(BLC) system provided a maximum equivalent drag saving of 5.5 square feet
of parasite area at Mach nuwbers up to 0.4. The coriesponding savings
for the "rigid" fairing at a Mach number of 0.4 was 3.5 square feet. For
the winged configuration, smaller savings were achieved, due primarily to
interference drag resulting from an inadequate wing root-pylon junction
for the high wing ircidence investigated.

Increasing Mach number increased the drag of all configurations tested.
This drag rise was particularly severe at Mach numbers greater than 0.4 for
all of the winged configurations tested with either faired or unfaired
rotor heads and for the wingless configuration with the floating fairing.
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FOREWORD

Thie test program was sponscred by the Eustis Directorate, U. S. Army Air
Mobility Research and Development Laboratory, and was monitored by
Messrs. William Yeager and Paul Mirick. The program was authorized by
DA Task 1F1622034A4102.
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Mr. Evan Fradenburgh of Sikorsky Aircraft assisted in the design of the
) floating fairing system and in the analysis of the data obtained there-
fronm.
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LIST OF SYMBOLS

A AJ total boundary layer control nozzle exit area, ft2

% b wing span, ft

3 - A 2/3

3 Cf aerodynamic cleanliness parameter, £/(GHW)

5

< CP pressure coefficient, measured pressure ninus freestream static
33 pressure/q, dimensionless -
3: Dbal measured balance drag, corrected for stru’. tare drag in the

= case of the tunnel balance, 1b

% Deq total equivalent dreg, Dext + Dpump’ 1b

e ext effective external drag, Dbal + Dram’ 1b

3

4 oump drag equivalent of power require¢ to drive boundary layer

:; = control system, prump (550/v), 1b

2 -

z Dram ram drag, mVo, 1b

H f parasite area, Drag/q, ft2 (includes induced drag for test con-
3 : figurations with wing)

-; th rotor head parasite area, rotor head drag/q, ft2

: fu boundary layer control net thrust parameter. Tnet/q’ ft2

g GW aircraft gross weight, 1lb

4 HO freestream total pressure, lb/ft2

; HJ boundary layer control jet total pressure, lb/i't2

= i um,  Povwer required to operate boundary layer control pump-duct

A puty system, horsepower

x4

L 1ift, 1b

i M freestream Mach number, dimensionless

3

by MJ boundary layer control jet Mach number, dimensioniess

o

£ . boundary layer control mass flow, slugs/sec
. K rotor RPM

9 PM pitching moment, positive nose up, fi-1lb

S % freestream static pressure, lb/ft2

= xiv N
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jet exit static pressure, 11)/1:“&;2

Py

qQ freestream dynamic pressure, X °ov02’ lb/f.’t2

R gas constant, 1715 ft2/sec2°R

RN Reynolas number, dimensionless

Tgross bouncary layer control gross jet thrust, 1b

Tnet bouwndary layer control net thrust, 1b

tso freestream stagnation terperature, °R

tsJ let exit stagnation temperature, °R

Vo freestream velocity, ft/sec

VJ Jet exit velocity, ft/sec

y wing spanwicze location, taken from the center of the wing, ft
a fuselage angle of attack, deg

a, wing angle of attack, deg

8 Glauert similarity factor, 1/4/1-M° , dimensionless
Y ratio of specific heats, 1.40 for air, dimensionless
G freestream stagnation density, slugs/ft3

Note: Model configuration symbols listed in Table I.
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INTRODUCTION

The feasibility of high-speed flight of conventional and compound heli-
copters has been demonstrated in numerous flight and wind tunnel tests.
However, the efficiency of many of these aircraft could be significantly
improved by minimizing rotor head and pylon drag. A number of rotor head
fairing concepts have been proposed, and some of these have reached the
wind tunrel or flight test stage. An accurate comparison of their
effectiveness has not been made, however, because of differences in model
scale and other test conditions. In addition, the effect of Mach number
on the drag characteristics of helicopter designs with either faired or
unfaired rotor heads has not been determined. Two promising rotor head
fairing concepts are the "rigid" fairing, shown in Figure 1 on the
Sikorsky S-67 BlackhawkTM helicopter, and the full-scale "floating” fair-
ing with boundary layer control (BLC), shown in Figure 2.

The rigid fairing was designed to provide a minimum-size sealed cover for
the rotor head. Blade flap and lag motions are accommodated by sealed
ball joints which are attached to the blade cuffs just outbcard of the
coincident flap-lag hinge. The central portion of the fairing is attached
directly to the rotor head. This fairing concept has previously been
tested at small scale and low speeds in the wind tunnel, a2nd in flight on
the S-67 helicopter.
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The ellipsoidal, floating rotor head fairing was developed to provide a 3z
streamlined, low-drag-coefficient enclosure for the rotor head, shaft b
and control rods. Previous investigations by Sikorsky Aircraft have shown g
that the theoretical reduction in drag provided by an ellipsoidal shell §
covering the rotor head may not be realized in practirce because of tie %
large adverse interference between the rotor head feiring and the pylon. ¥
This interference is manifested by flow separation over the aft portion of 3
the pylon and fairing, and this separation may extend to the wing root §
area and aft fuselage. Attempts were made to alleviate the adverse g
pressure gradient over the aft fairing by cambering the ellipsoid to re- g
duce the pressure gradient beneath it; however, this resulted in only §
minor reductions in drag. E
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In 1960, full-scale tests were carried out to investigate the reduction of
interference Letween the rotor head fairing and the pylon by means of blow-
ing boundary layer control (BLC). The rotor shaft and pushrods were
enclosed in a circular cylinder with jet slots just aft of the maximum
thickness point, blowing along a wedge-shaped afterbody as showm in Figure 2.
The ellipsoidal rotor head fairing was attached to the rotor blades
ovtboard of the flap-lag hinges, allowing it to "float" with the rotor tip
path plane and thus minimizing the size of the cutout holes necessary to
ailow blade motions. The wedge-shaped afterbody was spring loaded and
telescoping so that it followed the motions cf the ellipsoidal shell.
Sliding seals were provided between the afterbody and the ellipsoidal
fairing and between the cylinder and the ellipsoidal fairing. This system,
vhen used with the boundary layer control,was shown to reduce significantly
the adverse interference between the fairing and the pylon so that the




system provided a net saving in drag. These tests were report:d in
Reference 1.

|
%

The tests described in this report include a model buildup of 21 config-
urations including both fairing concepts on wingless and winged helicop-
ters. Tests were conducted at various angles of attack for Mach numbers
from 0.2 to 0.6. Rotor head RPM was also varied. Data acquired include
gross model lift, drag, and pitching moment, rotor head dra: (measured by

a separate balance), and pylon and wing surface pressures.
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DESCRIPTION OF MODEL AND TEST FACI{LiTIES

MODEL

The test model was designed to represent the airfrume of the Sikorsky
S-65-200 compound helicopter, an aircraft design of approxinately 62,000
pounds gross weight, with a 79--foot-diameter rotor and a 47.5-foot wing §pan.
Although no rotor was tested under this contract. the model size was
selected to be compatible with existing 9.0-foot-diameter model rotors.

. Thus, the scale factor (in length) is 9/79 = 0.114k = 1/9. A drawing of the

medel is presented in Figure 3.

. MODEL CONFIGURATIONS

OGRS

The model fuselage could be equipped with eitler of two main rotor pylons,
two rotor head fairings (each associated with a particular pylon), an
unfaired rotor head, blade stubs, and a wing. ‘"wenty-one combinations of
these components were tested during this investigation. The model
component designations are iisted in Table I. Table II summerizes the
test configurations and the type of data acquired for each. Photographs
of each of the rotor head configurations are shown in Figure 4. The two
complete configurations with fairings are shown in Figure 5.
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Table III summarizes the frontal areas of the various model components.

AIDAHIELE:

FUSELAGE AND ROTOR DRIVE

The fuselage was constructed with an aluminum and fiberglass skin over a
steel frame. The model was mounted on an existing t.ingle strut which was
swept forward from the tunnel floor at 30° with the fuselage at zero a» e
2 of attack. All instrumentation and model support lines were intermal .o

2 this strut. The fuselage was also equipped with a downward-angled V-tail
in order to eliminate any yaw-sideslip instability of the model on the
flexible support strut. The V-tail had an included angle of L45° to pro-
vide a large effective vertical area. A photograpn of the V-tail is shown
in Figure 6, and its characteristics are summarized in Figure 3.

RETRANINATIIA SN0

L8 % 7.
;zm:izvfymmmmmmemw:‘m‘mumumuwwml{.r:amﬁmh.m@ﬁ:);;mt\\mA‘Mwmnmar.»‘.em»wa:v‘mym&mx AR A U T LN MR AT (s M YA LA
R I NTIE PN

RS

A rotor drive system was provided to rotate the rotor heads through an RPM
range simuleting rotor tip speeds from zero to 670 ft/sec. The complete
rotor and drive system assembly was mounted on an internal strain-gaged
six-component btalance. Care was exercised in routing the rotor drive
system power, cooling, and lubrication lines to minimize the interference
between the metric and nonmetric parts of the model.
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WING

The wing was constructed of fiberglass over an aluminum spar. Figure T is
a schematic of the wing, including pressure tap locations and dimensions.
! The wing was located in a high position in the aircraft design to avoid

3 having the wing carry-through structure intrude into the useable cabin

g i space. The wing was positioned longitudinally to place the wing
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aerodynamic center at tie rotor centerline. The wing was set at an in-
cidence of 8.5° with respect to the fuselage. This incidence was chosen
so the wing and fuselage would carry two-thirds of the aircraft gross
weight at a 230-knot cruise at 8000 feet with the fuselage level. Remov-
able fillets were provided to fair the wing-fuselage-pylon junctions. The
fillet for the rigid fairing pylor ce= e seen in Figure 4c. No provisions
were made for wing flaps, ailerews, or propeller nacelles. Wing tips were
formed by rotating the tir-gection about the tip chord.

FLOATING FATRING AN") BOUNDARY LAYER CONTROL SYSTEM

4 The floating faj-ing system, incorporating a pylon, a boundary layer con-

5 trol system (B'), and an ellipsoidal fairing, is shown with the wing in

5 Figure 5a. Tris fairing system was previously tested at full scale but

low speeds (lheference 1). The full-scale model is shown in Figure 2. 1In
this design, the ellipscidal fairing is mounted to the rotor blades out-

i board of the flapping hinge. This attachrant method enables the fairing

9 to move wWith the largest blade motions--steady-state lag, steady-state flap
3 (coning), and first harmonic flap (tip-path-plane tilt)--thus reducing the
size of the cutouts in the fairing necessary to accommodate blade motions.
The 1/9th scale model fairing was equipped with blade stubs and the exposed
tips of the blede retention cuffs to simulate :.e blade root-fairing

i Juaction, but actual blade cutouts and seals were not provided. Good

i sealing of the cutout holes is necessary for obtaining maximum drag re-~
duction with any fairing. The model fairing was 16.9 inches in diameter
and 4.5 inches high. The bottom of the fairing was located 1.75 inches s

above the top of pylon Fp.
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The BLC cylinder was (.0 inches in diameter and was fitted with a wedge-
shaped afterbody which provided a sharp trailing edge. On operational
fairings, this afterbody would be designed to follow the coning and tip
path plane tilt motions of the rotating fairing; this was done in tne
full-scale test, Figure 2, but not in the 1/9 scale model tests. Felt
seals were provided between the afterbody and the fairing and between the
BLC cylinder and the fairing. Two jets, shown in Figure 8, exhaust air
tangentiaily zlong the afterbody to prevent separation behind the BLC
cylinder. Thus, attached flow is maintained on the fairing and rear pylorn.
The jet slots were vertical, and vere located at an angle of 100° aft of
the cylinder jeading edge. The jets were each 2.66 inches high ty 0.10
inch wide. Four vanes were mounted in each of the jet slots to produce an
even, tangential flow pattern. These venes were 0.040 inch thick; there-
fore, the total jet area wus 0.50 square inch. Air was supplied at a
controlled mass flow to the BLC cylinder through three l-inch hoses from a .
L0O-psi source. A plenum chamber was lccated inside the cylinder. The
supply air was diffused through perforated pipes which were designed to
provide low velocities and uniform pressure inside the plenum. Jet total
pressure was determined by several total pressure tubes within the plenum

chamber.

g1
£

A

n o -“.1 o ¥ "l/);:“" M“‘A"l"

SRR ALY

L
HEIAT iave

ey

M
VR,

‘f The BLC cylinder was bolted to the floating fairing pylon, Pp, which was
E made ¢f mahogany. A drawing of the floating feiring pylon with the BLC
o cylinder and afterbody is shnown in Figure 9. Pressure tap locations,
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shown in this figure, are specified by longitudinal station in inches from
the rotor shaft centerline and section cut. Section cutting planes are
taken parallel to the longitudinal axis of the fuselage and pass through
the fuselage top center. The zero-degree section cutting plane is hori-
zontal to the left side of the aircraft, the 90° section cutting plane is
vertical, and the 180°-section cutting plane is horizontal to the right
side of the aircraft.

RIGID FAIRING

The rigid fairing consists of a minimum-size, sealed cover fcr the rotor
head. A photograph of a full-scale fairing of similar design installed on
the S-67 Blackhawk is shown in Figure 1. Tae main shell of this fairing
is attached rigidly to the rotor head, and a felt seal is provided between
the shell and the pylon. Each inboard blade segment is covered by a
spherical shell centered on the coincident flap and lag hinges. This
component is attached to the blade outboard of the flap-lag hinge to allow
blade motions. The sliding joint between the main fairing shell and the
ball is equipped with a seal. The unfaired arms extending from the top
of the S-67 fairing are bifilar vibration absorbers, and are not part of
the fairing.

The model fairing, shown in Figure lc, was equipped with a felt seal
between the fairing and 